If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+42X-20=0
a = 1; b = 42; c = -20;
Δ = b2-4ac
Δ = 422-4·1·(-20)
Δ = 1844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1844}=\sqrt{4*461}=\sqrt{4}*\sqrt{461}=2\sqrt{461}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{461}}{2*1}=\frac{-42-2\sqrt{461}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{461}}{2*1}=\frac{-42+2\sqrt{461}}{2} $
| (20x+28)+22=90 | | 5(x-1)+3=-17 | | 9-(4z-6=9-5z | | 10x-6=5x+50 | | y=30-4(6) | | (20x+28)+20=90 | | .08x+2.75=4.03 | | y=30-4(5) | | 24/b=-6 | | 5(5+7x)=375 | | (.27)^2+2(.27)(q)+q^2=1 | | -11=9+r | | F(x)=x^2-9x-8 | | -4=-4(v-15) | | y=30-4(4) | | 120x=180 | | (3x+11)=71 | | 3/5=1/5+x | | x-3=x= | | 8(j-4)=2(4j- | | 10=3(j+2)+1 | | y=30-4(3) | | (3x+11)+71=180 | | 3(n+4)-(6-7n)=9n | | 13-k=7 | | 24m+14=14-16 | | X+.08x=65 | | -(h-5)=-4 | | 2(2x=3)=5(x+6)-28 | | 5q=31/q=13 | | 0.5y=2.1 | | 6(-5x+9)=24 |